Bibliography

1
ABAQUS Theory Manual. Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Street, Pawtucket, RI 02860-4847, U.S.A. (1997).

2
Anderson, J.D.Jr., Introduction to flight. Mc Graw-Hill International Editions (1989).

3
Ashcraft, C., Grimes, R.G., Pierce, D.J., and Wah, D.K., The User Manual for SPOOLES, Release 2.0: An object oriented software library for solving sparse linear systems of equations. Boeing Shared Services Group, P.O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124 U.S.A. (1998).

4
Ashcraft, C. and Wah, D.K., The Reference Manual for SPOOLES, Release 2.0: An object oriented software library for solving sparse linear systems of equations. Boeing Shared Services Group, P.O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124 U.S.A. (1998).

5
Ashcroft, N.W., and Mermin, N.D., Solid State Physics. Saunders College, Philadelphia (1976).

6
Ashdown, I., Radiosity: A Programmer's Perspective. Wiley, New York (1994).

7
Barlow, J., Optimal stress locations in finite element models. Int. J. Num. Meth. Engng. 10 , 243-251 (1976).

8
Beatty, M.F., Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues - with examples. Appl. Mech. Rev. 40(12) , 1699-1734 (1987).

9
Belytschko, T., Liu, W.K. and Moran, B., Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, New York (2001).

10
Berlamont, J., Hydraulica. Katholieke Universiteit Leuven, Belgium (1980).

11
Berlamont, J., Theorie van de verhanglijnen. Katholieke Universiteit Leuven, Belgium (1980).

12
Bernhardi,O.-E., Private Communication, University of Applied Sciences Karlsruhe (2014).

13
Bohl, W., Technische Strömungslehre. Vogel Würzburg Verlag, (1980).

14
Bragg, S.L., Effect of compressibility on the discharge coefficient of orifices and convergent nozzles. Journal of Mechanical Engineering. 2(1) , 35-44 (1960).

15
Carter, J.E., Numerical solutions of the Navier-Stokes equations for the supersonic laminar flow over a two-dimensional compression corner. NASA TR R-385 Report (1972).

16
Chanson, H., The hydraulics of open channel flow: an introduction. Elsevier Butterworth-Heinemann, Oxford (2004).

17
Ciarlet, P.G., Mathematical Elasticity, Volume I: Three-dimensional Elasticty. North Holland, New York (1988).

18
Czech, C., Efficiency evaluation of explicit finite element methods. Master Thesis, Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Germany (2019).

19
Dhondt, G., The Finite Element Method for Three-Dimensional Thermomechanical Applications. John Wiley & Sons, (2004).

20
Egli, A., The Leakage of Steam Through Labyrinth Seals. Trans. ASME. 57 , 115-122 (1935).

21
Eringen, A.C., Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington, New York (1980).

22
Ferziger, J.H. and Peric, M., Computational Methods for Fluid Dynamics, third rev. edition. Springer (2002).

23
Fitzpatrick, R., Maxwell's Equations and the Principles of Electromagnetism. Infinity Sciense Press LLC, Hingham, Massachusetts (2008).

24
Flanagan, D.P. and Belytschko, T., Uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Num. Meth. Eng. 17 , 679-706 (1981).

25
George, P.-L. and Borouchaki, H., Triangulation de Delaunay et maillage. Hermes, Paris (1997).

26
Greitzer, E.M., Tan, C.S. and Graf, M.B., Internal Flow. Cambridge University, Cambridge, UK (2004).

27
Hamrock, B.J., Schmid, S.R. and Jacobson, B.O. Fundamentals of Fluid Film Lubrication, 2nd Edition. Marcel Dekker Inc., New York (2004).

28
Harr, M.E., Groundwater and Seepage. Dover Publications Inc., New York (1990).

29
Hartmann, S., Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen. Ph.D. Thesis, Institut für Baustatik und Baudynamik, Universität Stuttgart (2007).

30
Hay, N. and Spencer, A., Discharge coefficients of cooling holes with radiused and chamfered inlets. ASME 91-GT-269 (1991).

31
Holzapfel, G.A., Gasser, T.C. and Ogden, R.W., A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. J. Elasticity 61, 1-48 (2000).

32
Hüeber, S., Discretization techniques and efficient algorithms for contact problems. Ph.D. Thesis, Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart (2008).

33
Hughes, T.J.R., The Finite Element Method. Dover Publications Inc., Mineola, New York (2000).

34
Idelchik, I.E., Handbook of Hydraulic Resistance, 2nd Edition. Hemisphere Publishing Corp (1986).

35
Incropera, F.P. and DeWitt, D.P., Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York (2002).

36
Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15 , 301-314 (1972).

37
Köhl, M., Dhondt, G. and Broede, J., Axisymmetric substitute structures for circular disks with noncentral holes. Computers & Structures 60(6) , 1047-1065 (1996).

38
Kuczmann, Miklós, Potential formulations in magnetics applying the finite element method. Lecture notes, Laboratory of Electromagnetic Fields, “Széchenyi István” University, Gyor, Hungary (2009).

39
Kundu, P.K. and Cohen, I.M., Fluid Mechanics (second edition). Academic Press (2002).

40
Kutz, K.J. and Speer, T.M., Simulation of the secondary air system of aero engines. Transactions of the ASME 116 (1994).

41
Lapidus, L. and Pinder, G.F., Numerical solution of partial differential equations in science and engineering. John Wiley & Sons, New York (1982).

42
Laursen, T.A., Computational Contact and Impact Mechanics. Springer-Verlag, Berlin Heidelberg New York (2003).

43
Lehoucq, R.B., Sorensen, D.C. and Yang, C., ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. (1998).

44
Lichtarowicz, A., Duggins, R.H. and Markland, E., Discharge coefficient for incompressible non cavitating flow through long orifices. Journal of Mechanical Engineering Sciences 7(2) , 210-219 (1965).

45
Liew, K.M. and Lim, C.W., A higher-order theory for vibration of doubly curved shallow shells. Journal of Applied Mechanics 63 , 587-593 (1996).

46
Luenberger, D.G., Linear and nonlinear programming. Addison-Wesley Publishing Company, Reading, Massachusetts (1984).

47
Marsden, J.E. and Hughes, T.J.R., Mathematical foundations of elasticity. Dover Publications Inc, New York (1993).

48
McGreehan, W.F. and Schotsch, M.J., Flow Characteristics of Long Orifices With Rotation and Corner Radiusing. ASME-Paper, 87-GT-162, 1-6 (1987).

49
Meirovitch, L., Analytical Methods in Vibrations. The MacMillan Company, Collier MacMillan Limited, London (1967).

50
Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32(8) , 1598-1605 (1994).

51
Méric, L., Poubanne, P. and Cailletaud, G., Single Crystal Modeling for Structural Calculations: Part 1 - Model Presentation. Journal of Engineering Materials and Technology 113 , 162-170 (1991).

52
Méric and Cailletaud, G., Single Crystal Modeling for Structural Calculations: Part 2 - Finite Element Implementation. Journal of Engineering Materials and Technology 113 , 171-182 (1991).

53
Merz, S., Anwendung des Zienkiewicz-Zhu-Fehlerabschätzers auf Triebwerksstrukturen. Diplomarbeit-Nr. 06/56, Hochschule Karlsruhe - Technik und Wirtschaft, Fakultät für Maschinenbau (2006).

54
Miller, D.S., Internal Flow Systems. Britisch Hydromechanics Research Association (B.H.R.A.) Fluid Engineering Series (1978).

55
Miranda, I., Ferencz, R.M. and Hughes, T.J.R., An improved implicit-explicit time integration method for structural dynamics. Earthquake Engineering and Structural Dynamics 18 , 643-653 (1989).

56
Mittal, S., Finite element computation of unsteady viscous compressible flows. Comput. Meth. Appl. Mech. Eng. 157 , 151-175 (1998).

57
Möhring, U.K., Untersuchung des radialen Druckverlaufes und des übertragenen Drehmomentes im Radseitenraum von Kreiselpumpen bei glatter, ebener Radseitenwand und bei Anwendung von Rückenschaufeln. Technische Universität Carolo-Wilhelmina zu Braunschweig (1976).

58
Moran, M.J. and Shapiro, H.N., Fundamentals of Engineering Thermodynamics. Wiley (2006).

59
Mortelmans, F., Berekening van konstrukties, deel 3, Gewapend Beton I. ACCO, Leuven (1981).

60
Muller, Y., Coupled Thermo-Mechanical Fluid-Structure Interaction in the Secondary Air System of Aircraft Engines. Ph.D. Thesis, University of Valenciennes - Université de Valenciennes et du Hainaut Cambresis (2009).

61
Olovsson, L. and Simonsson, K., Iterative solution technique in selective mass scaling. Communications in Numerical Methods in Engineering. 22 , 77-82 (2006).

62
Pacher, M., On the Energy Conservation in the dynamic Contact solved by implicit dynamic Finite Element Method. Master Thesis, University of Trento, Department of Industrial Engineering, Italy (2016).

63
Parker, D.M. and Kercher, D.M., An enhanced method to compute the compressible discharge coefficient of thin and long orifices with inlet corner radiusing. Heat Transfer in Gas Turbine Engines HTD-188 , 53-63 (ASME 1991).

64
Patankar, S.V. and Spalding, D.B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows Int. J. Heat Mass Transfer. 15 , 1787-1806 (1972).

65
Pfoertner, H., http://www.enginemonitoring.org/opti/fminsi.zip and http://www.enginemonitoring.org/opti/readme.txt. Accessed on October 9th, 2021.

66
Pope, S.B., Turbulent Flows. Cambridge University Press(2001).

67
Popov, P.P., Introduction to mechanics of solids. Prentice-Hall, New Jersey (1968).

68
Pulliam, T.H. and Barton, J.T., Euler computations of AGARD working group 07 airfoil test cases. AIAA-85-0018 (1985).

69
Rama, G., Marinkovic, D. and Zehn, M., A three-node shell element based on the discrete shear gap and assumed natural deviatoric strain approaches. J. Braz. Soc. Mech. Sci. Eng. 40 , 356, (2018). https://doi.org/10.1007/s40430-018-1276-4.

70
Rank, E., Ruecker, M. Private Communication . TU Munich (2000).

71
Richard, H.A., Fulland, M. and Sander, M., Theoretical crack path prediction Fatigue Fract. Engng. Mater. Struct.. 28 , 3-12 (2004).

72
Richter, H., Rohrhydraulik. Springer, Berlin-Heidelberg (1971).

73
Richard, H.A., Fulland, M. and Sander, M., Theoretical crack path prediction Fatigue Fract. Engng. Mater. Struct.. 28 , 3-12 (2004).

74
Schlichting, H. and Gersten, K., Grenzschichttheorie. Springer-Verlag Berlin Heidelberg (2006).

75
Scholz, N., Aerodynamik der Schaufelgitter. Schaufelgitter, Band 1, Karlsruhe Braun Verlag (1965).

76
Schwarz, H.R., FORTRAN-Programme zur Methode der finiten Elemente . Teubner (1981).

77
Silvester, P.P. and Ferrari, R.L, Finite elements for electrical engineers. Cambridge University Press (1996).

78
Simo, J.C. and Hughes, T.J.R., Computational Inelasticity . Springer, New York (1997).

79
Simo, J.C. and Taylor, R.L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering. 85 , 273-310 (1991).

80
Simo, J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering. 66 , 199-219 (1988).

81
Simo, J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering. 68 , 1-31 (1988).

82
Sitzmann, S., Willner, K. and Wohlmuth, B.I., A dual Lagrange method for contact problems with regularized contact conditions. Int. J. Num. Meth. Engng.. 99(3) , 221-238 (2014).

83
Sitzmann, S., Willner, K. and Wohlmuth, B.I., A dual Lagrange method for contact problems with regularized frictional contact conditions: Modelling micro slip Computer Methods in Applied Mechanics and Engineering. 285 , 468-487 (2015).

84
Sitzmann, S., Willner, K. and Wohlmuth, B.I., Variationally consistent quadratic finite element contact formulations for finite deformation contact problems on rough surfaces. Finite Elements in Analysis and Design. 109 , 37-53 (2015).

85
Sitzmann, S., Robus algorithms for contact problems with constitutive contact laws. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2015).

86
Sloan, S.W., A FORTRAN program for profile and wavefront reduction. Int. J. Num. Meth. Engng. 28, 2651-2679 (1989).

87
Smith, A.J. Ward, Internal fluid flow. Oxford University Press (1980).

88
Spalart, P.R., and Rumsey, C.L., Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations. AIAA Journal. 45(10) , 2544-2553 (2007).

89
Taylor, R.L, Beresford, P.J. and Wilson, E.L., A non-conforming element for stress analysis. Int. J. Num. Meth. Engng. 10 , 1211-1219 (1976).

90
Van Doormal, J.P. and Raithby, G.D., Enhancements of the SIMPLE method for predicting incompressible fluid flows. Num. Heat Transfer. 7 , 147-163 (1984).

91
Vazsonyi, A., Pressure loss in elbows and duct branches. Trans. ASME 66, 177-183 (1944).

92
Washizu, K., Some considerations on a naturally curved and twisted slender beam. Journal of Mathematics and Physics 43 , 111-116.

93
Wilcox, D.C., Turbulence modeling for CFD. La Cañada, CA: DCW Industries (1993).

94
Wriggers, P., Computational Contact Mechanics. John Wiley & Sons (2002).

95
Yunhua, Luo, An Efficient 3D Timoshenko Beam Element with Consistent Shape Functions. Adv. Theor. Appl. Mech. 1 , no. 3, 95-106 (2008).

96
Zienkiewicz, O.C. and Codina, R., A general algorithm for compressible and incompressible flow - Part 1: The split, characteristic-based scheme. Int. J. Num. Meth. Fluids 20, 869-885 (1995).

97
Zienkiewicz, O.C., Morgan, K. and Satya Sai, B.V.K., A general algorithm for compressible and incompressible flow - Part II. Tests on the explicit form. Int. J. Num. Meth. Fluids 20, 887-913 (1995).

98
Zienkiewicz, O.C. and Taylor, R.L., The finite element method.McGraw-Hill Book Company (1989).

99
Zienkiewicz, O.C., Taylor, R.L. and Nithiarasu, P., The finite element method for fluid dynamics. 6th edition, Elsevier (2006).

100
Zienkiewicz, O.C. and Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Num. Meth. Engng. 33, 1331-1364 (1992).

101
Zienkiewicz, O.C. and Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Num. Meth. Engng. 33, 1365-1382 (1992).

102
Zimmermann, H., Some aerodynamic aspects of engine secondary air systems. ASME 889-GT-209.